
Energy profiling of software:
resource analysis

John Gallagher
Roskilde University

ICT-Energy: Energy consumption in future ICT
devices

Summer School, Fiuggi, Italy, July 7-12, 2015

Adding energy to the model

/74 50

n z e’

n’ z’ e

n = 4
z = 1

n > 0
n’ = n-1
z’ = z * n

n = n’
z = z’

n ≤ 0, print(z) e = e’+107
e

e

e = 0 e is an “energy counter”

e’ = e+17

e = e’+42

e’ = e+3

On each transition, increment the
energy counter by the amount of
energy required to execute the transition.
The numbers are obtained from a model

Estimating total energy

•  The total energy consumed by the
program is given by the energy
counter in the reachable “stop” state.

•  For this example, the analysis yields a
value of 304 (initial value n=4)

•  However if the input data is unknown,
we would get a relationship between
input value n and energy e.

•  In the example, e = 17 + n*45 + 107

/74 51

Beyond linear energy estimates

•  With polyhedron or interval
abstractions, we are limited to linear
expressions.

•  This is quite restrictive and approximate
•  A better approach is given by deriving

cost functions from the automaton,
and solving them

/74 52

Deriving cost functions

/74 53

n z

n’ z’

n = ?
z = 1

n > 0
n’ = n-1
z’ = z * n

n = n’
z = z’

n ≤ 0, print(z)
stop

start 1

3

2 4

Let cost2(n) be the cost of
the loop starting at 2.
We can write a recurrence relation
cost2(n) = cost2(n-1) + 45 (if n > 0)
cost2(n) = 0 (if n ≤ 0)
The cost of the whole computation
for input n is 17 + cost2(n) + 107

Solving cost relations

•  Tools like Mathematica are capable of
solving many recurrence relations.

cost2(n) = cost2(n-1) + 45 (if n > 0)
cost2(n) = 0 (if n ≤ 0)

has a closed-form solution
cost2(n) = 45*n

/74 54

More complex cases

•  By solving energy recurrence
equations we can get non-linear
energy functions

•  E.g. a matrix multiplication program for
matrices of size n
42.47 n3

 + 68.85 n2+ 49.9 n + 24.22 nJoules

/74 55

How do we get an energy model?

•  The energy is consumed at the
hardware level.

•  We aim to measure the energy
consumption of basic operations
– e.g. machine instructions, basic arithmetic

operations, etc.
– The numbers for the energy counter are

derived from the basic operations in the
transitions

/74 56

Measuring energy

•  In the ENTRA project, the energy consumption
of the instruction set (ISA) of the xCORE
processor was measured (at the University of
Bristol)

•  The energy required for each instruction, and
transition from one instruction to the next,
resulted in an energy model for the instruction
set

•  Energy estimates for sections of ISA code could
then be obtained.

/74 57

The xCORE energy model

/74 58

b
u

u
6

b
u
f

u
6

z
e
x
t

r
u
s

s
e
x
t

r
u
s

l
d
c

r
u
6

m
k
m
s
k

2
r

a
n
d
n
o
t

2
r

s
e
x
t

2
r

z
e
x
t

2
r

l
d
a
p
f

u
1
0

c
l
z

l
2
r

m
k
m
s
k

r
u
s

l
d
a
p
b

u
1
0

l
d
c

l
r
u
6

l
d
a
p
f

l
u
2
0

l
d
a
p
b

l
u
2
0

n
e
g

2
r

n
o
t

2
r

b
i
t
r
e
v

l
2
r

b
y
t
e
r
e
v

l
2
r

l
d
w

3
r

s
t
w

3
r

l
d
1
6
s

3
r

l
d
8
u

3
r

s
t
8

3
r

s
t
1
6

3
r

l
d
a
w

u
6

e
q

2
r
u
s

s
h
r

3
r

s
h
l

3
r

e
q

3
r

l
d
a
w

l
r
u
6

l
s
s

3
r

l
s
u

3
r

s
h
l

2
r
u
s

s
h
r

2
r
u
s

s
u
b

2
r
u
s

a
d
d

2
r
u
s

o
r

3
r

a
n
d

3
r

s
u
b

3
r

l
d
a
w
b
l
2
r
u
s

l
d
a
w
f
l
2
r
u
s

a
d
d

3
r

a
s
h
r
l
2
r
u
s

a
s
h
r

l
3
r

l
d
a
1
6
b

l
3
r

x
o
r

l
3
r

l
d
a
w
b

l
3
r

c
r
c
3
2

l
3
r

l
d
a
1
6
f

l
3
r

l
d
a
w
f

l
3
r

m
u
l

l
3
r

c
r
c
8

l
4
r

m
a
c
c
u

l
4
r

m
a
c
c
s

l
4
r

l
s
u
b

l
5
r

l
a
d
d

l
5
r

l
m
u
l

l
6
r

Odd threads instruction (name & encoding)

bu u6
buf u6

zext rus
sext rus
ldc ru6

mkmsk 2r
andnot 2r
sext 2r
zext 2r
ldapf u10
clz l2r

mkmsk rus
ldapb u10
ldc lru6

ldapf lu20
ldapb lu20
neg 2r
not 2r

bitrev l2r
byterev l2r

ldw 3r
stw 3r

ld16s 3r
ld8u 3r
st8 3r

st16 3r
ldaw u6
eq 2rus

shr 3r
shl 3r
eq 3r

ldaw lru6
lss 3r
lsu 3r
shl 2rus
shr 2rus
sub 2rus
add 2rus
or 3r

and 3r
sub 3r

ldawb l2rus
ldawf l2rus
add 3r

ashr l2rus
ashr l3r

lda16b l3r
xor l3r

ldawb l3r
crc32 l3r
lda16f l3r
ldawf l3r
mul l3r

crc8 l4r
maccu l4r
maccs l4r
lsub l5r
ladd l5r
lmul l6r

E
ve

n
th

re
ad

s
in

st
ru

ct
io

n
(n

am
e

&
en

co
di

ng
)

120

128

136

144

152

160

168

176

184

192

200

Po
w

er
(m

W
)

Steve Kerrison,
Univ. of Bristol

Higher level energy models

•  The energy model for machine
instructions can be transferred to
higher levels such as LLVM
intermediate code, or source code
operations (Georgiou et al. 2014)

•  There is a loss of precision, since the
mapping is not one-to-one

•  Experiments indicate reasonable
precision at LLVM level.

/74 59

Some available tools
•  CiaoPP (IMDEA Software, Madrid)
–  a resource analysis tool based on solving cost

relations (using Mathematica)
–  designed for Prolog programs, adapted to

imperative languages
•  COSTA (UCM, Madrid).
–  Can analyse resources such as time and energy

for Java and Java bytecode (uses the PUBS
solver)

•  Termination analysis tools
–  several tools for proving termination of programs

are being adapted for resource analysis

/74 60

Towards parallel programs

•  So far, we only talked about sequential
programs

•  However, for energy analysis, multi-
threaded programs are a very
important class

•  How can we estimate energy
consumption of parallel programs?

/74 61

Energy and multi-threaded code

•  Often, we want to design threads to
run as slowly as possible, while still
meeting performance targets

•  Reducing clock frequency saves
power

•  Cores that are inactive should be put
in power-saving modes

/74 62

Communication and timing
analysis

•  We consider a language with
synchronous channel communication

•  Usually, threads enter some periodic
behaviour, synchronising among
themselves

•  The programmer needs a model of
how much work and time a thread
uses between communications

/74 63

Parallel execution

The threads run
until they reach a
synchronisation point.

After synchronising, they
continue to the next, etc.

Timing analysis is vital.

The left thread always
waits for the other.

Possible optimisations:

1. slow down the left
thread
2. give it some more work
to balance the load
3. put in power-saving
mode while waiting

/74 64

Example thread behaviour

/74 65

P

R

Q

S

4

b

c

d
g

f

e

h

1

a

2 3

5

6 7 8

8 threads in a pipeline with a split in the middle.
P,Q,R and S are some functions on the values passed along.

Analysis of the sequential components

•  We assume that we used the
sequential techniques already
mentioned
–  to get energy estimates for P,Q,R and S
–  to get execution time estimates for P,Q,R

and S

/74 66

A1

A2

start

a

a

H1

H2

start

h

h

B1

B2

start

a

a

P

b

E1

E2

start

d

R

f

D1

D2

start

c

c

Q

e

G1

G2

start

g

g

S

h

C
1

C5

start

b

b

C2

b
C3

C4

c

d

F1

F5

start

e

e

F2

f
F3

F4

g

g

d

Automata for the individual threads

/74 67

A2 B2 C3 D2 E2 F4 G2 H2

A2 P C4 Q E2 F5 S H2

[d||e|| h]

A2 P C5 D2 R F2 G2 H2

[a||c|| g]

A2 B2 C2 D2 E2 F3 G2 H2

[b||f]

A2 P C2 D2 E2 F4 S H2

[a||g]

[b||h]

Analysis of the
thread
synchronisation
identifies periodic
behaviour

Compute a critical
path of the loop,
based on the time
estimates and the
order on tasks.

/74 68

Thread behaviour

•  Assume task times
– P = 100, Q = 334, R=500, S=250

•  Obtain throughput
– 382.5

•  Thread activity
– Thread 7 (67%), Thread 5 (66%), Thread 4

(44%),..... Thread 1(1.3%)

/74 69

Energy and power estimates

•  The energy of the whole cycle consists
of
–  the total energy for the tasks in the cycle
– an overhead for the number of active

threads (obtained from the critical path)
– an estimate of the energy used while

idling
•  The power (Watts) is E/T, where E is the

energy and T is the time of the cycle

/74 70

Summary of Part 2

•  We add energy “counters” to the
automaton derived from the program

•  Two methods for approximation of
counter values
– convex polyhedra abstraction (linear

approx)
– solving cost recurrence equations (can

give non-linear functions)

/74 71

Summary (continued)

•  Energy analysis of parallel code is vital,
since major power optimisations are
available

•  We generate a model of thread periodic
behaviour, yielding estimates of
–  throughput
– parallelism
– energy consumption and power dissipation

/74 72

Finally

•  The field is young
•  Mature tools (comparable to UPPAAL)

are not yet available
•  Rapid advances in program analysis

and verification technology is being
extended and applied to resource
analysis

/74 73

/74 74

Thank you

